<u>NanΩhmics</u>

Multilayer Anti-Reflective Coating Development for PMMA Fresnel Lenses

Don Patterson, Keith Jamison, and Byron Zollars

Mirror Technology SBIR/STTR Workshop

Albuquerque, NM June 17, 2009

Radiation Hard Multilayer Optical Coatings

SBIR Phase II Contract
NNX09CB36C
Nanohmics, Inc.

Space ready multi-layer optical coatings

Problem: New optical coatings need to be developed for next generation light weight space base optics for use in programs such as NASA's EUSO observatory

Phase II Goal: Develop a robust anti-reflective coating that can be applied to PMMA Fresnel lenses

Nanohmics' Approach: Multi-layer amorphous nitrides / oxides as optical coating

Why PMMA?

- Light weight
- UV Resistant
- UV Transparent
- Relatively inexpensive

Advantages of Amorphous Oxides and Nitrides

- Proven radiation resistance to darkening
- Can be used to design anti-reflection, reflective, and band pass coatings
- Deposit on room temperature substrates
- Adhere well to most materials
- Robust coating

Radiation Hardness

Multi-layer nitride / oxide coating exposed to ~ 10¹⁵ protons/cc flux at 20 keV, 50 keV, 100 keV and 300 keV

Advantages of Sputter Deposition

- Able to deposit optical quality films
- Reactive growth of nitrides and oxides results in relatively fast deposition rates
- Sputter process results in higher density, better adhesion coatings compared to e-beam deposition
 - Bias sample if increased density desired
- Deposit on cooled substrates
- Large established infrastructure
- Relatively inexpensive process that can handle large substrates

CVC 601 Sputter Deposition System

New Deposition System

Amorphous Nitride / Oxide Growth

- Coating materials: AlN, ZrO₂, and SiO₂
- All materials grown using reactive sputtering
 - Solid target (Al, Zr, Si)
- RF power between 200 and 500 W RF
- Growth rates ~0.2-0.5 microns / hr
- Thickness measured using optical methods (Filmetrics F20) and profilometry (Dektak)
- No delamination noted after thermal cycling (-55 C to 75 C)

Growth Rate and Adhesion Strength

Growth rate of SiO₂, AlN, and ZrO₂ at 400 W RF power.

Material	Growth Rate
SiO ₂	6.7 nm/min
AIN	1.9 nm/min
ZrO ₂	2.0 nm/min

Adhesion strength to PMMA

	AIN	SiO ₂	ZrO ₂
Max Adhesion Force (Kg)	4.7	3.0	1.0
Max Adhesion Strength (Kg/cm²)	83	52	18

Dispersion Curves

- At 500 nm: AlN (n=1.94), ZrO₂ (n=2.1), SiO₂ (n=1.48)
- k < 0.01 (transparent materials) over studied range

Anti-Reflective Coating Model

SiO₂, AlN, and ZrO₂

Prescription

Anticipated Spectrum

AR Coated UVT PMMA

AR Coated UVT PMMA

Stress

AlN at 600 W

AlN at 200 W

Current Status / Results

- Measured n and k for amorphous materials
- Developed method for reducing stress in the films
- Designed new deposition system to be used for Fresnel lens coating
- Initial AR coatings look promising

Future Work

- Improve models with new data
- Qualify new deposition tool
 - Deposition parameters
 - Coating uniformity
 - Stress reduction
- Deposition on Fresnel lenses